Принцип действия узо основан на. Принцип работы узо и схема подключения в однофазной сети. На что следует обратить внимание при выборе УЗО

14.12.2021 Графика

Можно услышать мнение, в котором оспаривается необходимость установки устройств защитного отключения (далее УЗО). Чтобы опровергнуть или подтвердить его необходимо понимать функциональное назначение этих устройств, их принцип работы, конструктивные особенности и схему подключения. Также немаловажным фактором является правильное подключение, в зависимости от определенной задачи. Мы постараемся максимально широко ответить на все вопросы касательно данной темы.

Функциональное назначение

Согласно официальному определению данный тип устройств играет роль быстродействующего защитного выключателя, реагирующего на утечку тока. То есть он срабатывает в том случае, когда образуется цепь между фазой и «землей» (проводником РЕ).

Приведем классический пример, в ванной установлен электрический водонагреватель. Он работает беспроблемно гарантийный срок и даже более, потом наступает момент, когда корпус одного из нагревающих элементов дает трещину и происходит пробой фазы на воду.

Если в данном случае образуется цепь: фаза – человек – земля, тока нагрузки будет недостаточно для срабатывания электромагнитной защиты, она рассчитана на КЗ. Что касается тепловой защиты, то время ее срабатывания значительно дольше сопротивляемости человеческого организма деструктивному воздействию электротока. Результат можно не описывать, самое страшное то, что в многоквартирном доме такой бойлер может нести угрозу соседям.

В таких случаях представленный аппарат – единственно действенный способ обеспечить надежную защиту. Самое время рассмотреть его принципиальную схему, конструкцию и принцип действия.

Схема устройства

В первую очередь, представим принципиальную схему устройства, с указанием его основных элементов.


Обозначение:

  • А – Реле, управляющее контактной группой.
  • В – Дифференциальный ТТ (трансформатор тока).
  • С – Обмотка фазы на ДТТ.
  • D – Обмотка нуля на ДТТ.
  • Е – Контактная группа.
  • F – Нагрузочное сопротивление.
  • G – Кнопка, запускающая тестирование устройства.
  • 1 – Вход фазы.
  • 2 – Выход фазы.
  • N – Контакты нулевого провода.

Теперь объясним, как это работает.

Принцип работы

Допустим, от нашего защитного устройства запитан некий прибор с внутренним сопротивлением R n , при этом корпус подключенного устройства заземлен. В данном случае при штатном режиме работы, через обмотки I и II ДТТ будут протекать равные по значению, но разные по направлению токи.


Таким образом, суммарная величина i 0 и i 1 будет нулевой. Соответственно, вызываемые токами магнитные потоки в ДТТ, также будут встречными, поэтому их суммарная величина, также будет нулевой. С учетом перечисленных условий, во вторичной обмотке ДДТ ток образовываться не будет, поэтому реле, управляющее контактной группой, не инициируется. То есть, защитное устройство будет оставаться во включенном состоянии.

Теперь рассмотрим ситуацию, в которой произошел пробой на корпус подключенного оборудования.


В результате появления тока утечки (i у) на «землю» будет нарушен баланс токов, протекающих по первичным обмоткам I и II. Это приведет к тому, что величина магнитного потока также станет отличной от нуля, что вызовет образования тока (i 2) на вторичной обмотке ДТТ (III), к которой подключено реле, управляющее контактной группой. Оно сработает, и подключенное оборудование будет обесточено.

Кнопка тестирования на приборе имитирует утечку тока через резистор R t , что дает возможность убедиться в работоспособности прибора. Такую проверку необходимо проводить не реже одного раза в месяц.

Конструктивное исполнение

Ниже на рисунке представлено типовое защитное устройство со снятой верхней крышкой, что позволяет рассмотреть основные узлы конструкции.


Обозначения:

  • А – Механизм кнопки, запускающей тестирование устройства.
  • В – Контактные площадки для подключения входа фазы и нулевого провода.
  • С – Дифференциальный ТТ.
  • D – Электронная плата усилителя тока, поступающего со вторичной обмотки, до уровня, необходимого для срабатывания реле.
  • Е – Нижняя часть пластикового корпуса со стандартным креплением под DIN-рейку.
  • F – Дугогасительнаые камеры на размыкающейся группе контактов.
  • G – Контактные площадки для подключения выхода фазы и нулевого провода.
  • H – Механизм расцепителя (приводится в действие реле или вручную).

Перечень основных характеристик

Разобравшись с конструкцией приборов и их принципом работы, перейдем к основным параметрам. К числу таковых относятся:

  • Тип защищаемой электропроводки, она может быть однофазной или трехфазной. Данный параметр влияет на количество полюсов (2 или 4).
  • Величина номинального напряжения, для двухполюсных аппаратов это 220-240 Вольт, четырехполюсных – 380-400 Вольт.
  • Величина номинальной токовой нагрузки, этот параметр соответствует аналогичному у автоматических выключателей (далее АВ), но имеет несколько другое назначение (подробно будет рассказано ниже), измеряется в Амперах.
  • Номинальная величина дифференциального (отключающего) тока, типовые значения: 10, 30, 100 и 300 мА.
  • Вид отключающего тока, принятые обозначения:
  1. AC – Соответствует переменному току синусоидальной формы. Допускается как его медленное нарастание, так и внезапное проявление.
  2. А – К предыдущим характеристикам (AC) добавляется возможность отслеживать утечку выпрямленного пульсирующего тока.
  3. S – Обозначение селективных устройств, они отличаются относительно высокой задержкой срабатывания.
  4. G – Соответствует предыдущему типу (S), но с меньшей задержкой.

Теперь необходимо объяснить значение параметра номинального тока, поскольку с ним возникают некоторые вопросы. Это значение указывает на максимально допустимый ток для данного защитного электромеханического аппарата.

Подбирая этот параметр необходимо учесть, что он должен быть на одну ступень выше, чем у АВ на данной линии. Например, если АВ рассчитан на 25 А, то необходимо устанавливать защитные устройства с номинальным током – 32 А.

Обратим, внимание, на то, что данный тип устройств не предназначен для срабатывания от КЗ и перегрузки. Если произойдет подобная авария, то выгорит вся проводка и возникнет пожар, но аппарат так и останется включенным. Именно поэтому такие защитные устройства необходимо использовать совместно с АВ. Как вариант, можно устанавливать диффавтомат, по сути это тоже устройство защитного отключения, но снабженное механизмом защиты от КЗ и перегрузки.

Маркировка

Маркировка наносится на лицевую панель прибора, расскажем, что она обозначает на примере двухполюсного устройства.


Обозначения:

  • А – Аббревиатура или логотип производителя.
  • В – обозначение серии.
  • С – Величина номинального напряжения.
  • D – Параметр номинального тока.
  • Е – Значение отключающего тока.
  • F – Графическое обозначение типа отключающего тока, может быть продублировано литерами (в нашем случае изображена синусоида, что указывает на тип АС).
  • G – Графическое обозначение устройства на принципиальных схемах.
  • Н – Значение условного тока КЗ.
  • I – Схема устройства.
  • J – Минимальное значение рабочей температуры (в нашем случае: – 25°С).

Мы привели типовую маркировку, которая применяется в большинстве устройств данного класса.

Варианты подключения

Прежде, чем перейти к типовым схемам подключения, необходимо рассказать о нескольких общих правилах:

  1. Устройства данного типа должны быть в паре с АВ, как мы уже упоминали выше, это связано с тем, что защитных устройств не оборудовано защитой от КЗ.
  2. Величина номинального тока защитного устройства, она должна быть на ступень выше, чем у стоящего с ним в паре АВ.
  3. Нельзя путать входные и выходные контакты. То есть, на вход, помеченный, как правило, «1» должна подаваться фаза, на «N» – ноль. Соответственно, «2» – это выход фазы, а «N» – нуля.
  4. Ноль после аппарат не должен соединяться с нулем до него.

Теперь рассмотрим самую простую схему, в которой на каждую линию установлена защита от КЗ и тока утечки.


В данном случае все просто, на вход устанавливается АВ (А на рис. 7) с номинальным током 40 А. После него стоит общее устройство (В), его еще называют противопожарным. У данного устройства ток утечки должен быть не менее 100 мА, номинальный ток, как минимум – 50 А (см. пункт 2 общих правил, указанных выше). Далее идут две связки УЗО-АВ (С-Е и D-F). Параметр номинального тока у «С» и «D» – 16 A. Для «E» и «F» это параметр должен быть на ступень выше, в нашем случае – это 20 А. Что касается величины отключающего тока, то для влажных помещений этот показатель должен быть 10 мА, для остальных групп потребителей – 30 мА.

Такой вариант подключения самый простой и надежны, но при этом и более затратный. Для двух внутренних линий его еще можно использовать, но когда их число от 4-х и больше имеет смысл ставить одно устройство защиты на группу АВ. Пример такой схемы приведен нижне.


Как видите в данной схеме у нас установлено одно общее (противопожарное) защитное устройство и четыре групповых на освещение, кухню, розетки и ванную комнату. Такой вариант подключения позволяет существенно сократить затраты, по сравнению со схемой, где на каждую линию подключается связка УЗО-АВ. Помимо этого обеспечивается необходимый уровень защиты.

В заключение несколько слов о необходимости защитного заземления. Для нормального функционирования УЗО оно необходимо. В интернете можно найти схему включения без PE (собственно она ничем не отличается от обычной), но следует заметить, что сработка будет только в том случае, когда произойдет контакт с батарей, трубами холодной или горячей воды и т.д.

Устройство защитного отключения далее УЗО, предназначено для защиты человека от поражения электрическим током, а также от возникновения пожара, который может возникнуть при утечки электрического тока, вследствие плохой изоляции или плохого соединения электроустановок (ЭУ).

УЗО должно сработать, то есть, разомкнуть контакты, тем самым полностью прекратить подачу напряжения на защищаемую линию, при условии:

1 Прикосновения человека к нетоковедущим частям ЭУ оказавшимся под напряжение вследствие пробоя изоляции.
2 Прикосновении человека к токоведущим частям ЭУ, находящимся под напряжением.
3 Возникновения (дифференциального) тока утечки на корпус ЭУ или землю для предотвращения пожара.

Принцип действия УЗО. Схема

Рис. 1

1 Дифференциальный трансформатор тока
2 Пусковой элемент
3 Исполнительный механизм
4 Кнопка «Тест» для контроля исправности УЗО
I 1 – I 2 направлениетока относительно нагрузки
I D – ток утечки
Ф 1 – Ф 2 магнитные потоки

Назначение блоков.
1 Дифференциальный трансформатор тока (используется в большинстве УЗО) измеряет баланс токов между входящими в него проводниками.
2 Пусковой элемент (состоит, как правило, из электромагнитных реле) служит для управления (воздействия) исполнительным механизмом.
3 Исполнительный механизм предназначен для аварийного отключения эелетроцепи, контролируемой УЗО.
4 Кнопка «Тест» для контроля исправности УЗО путем создания имитации тока утечки.

Принцип работы устройство защитного отключения (УЗО)

Принципиальная электрическая схема

Рис. 2

1, 2 Первичные обмотки
3 Вторичная обмотка

При исправности контролируемой линии, нет заданного тока утечки, и трансформатор находится в состоянии покоя (равновесия), потому что токи в встречно включенных первичных обмотках трансформатора равны. Из-за того, что равные магнитные потоки идущие навстречу друг другу взаимовычитаются (тоесть равны нулю), то во вторичной катушке не возникает электромагнитное поле, а значит нет напряжения и не возникает ЭДС способное воздействовать на реле, на основе которого собран пусковой механизм (рис.1 ).

А как только происходит утечка на защищаемой (контролируемой) линии равная значению срабатывания УЗО (как правило, от 10 до 30 mA), то нарушатся равенство в первичных обмотках трансформатора. Вследствие этого возникает электромагнитное поле в первичных и вторичных катушках, которое образует связь по напряжению. Тоесть, во вторичной обмотке возникает напряжение срабатывания реле (рис. 2 ), из которого состоит пусковой элемент (рис. 1) воздействие, которого на исполнительный механизм (рис. 1) и отключает контактную группу, обесточивая, таким образом, защищаемую линию.

Внимание!

Следует помнить, что УЗО требует ежемесячной проверки, которая осуществляется нажатием кнопки «Тест». При этом происходит замыкание электроцепи, эмитирующей искусственную утечку тока и срабатывание устройства защитного отключения. Отсутствие срабатывания укажет на полную неисправность устройства.

По современным требованиям все электроустановки должны иметь или . При этом возникшая заданная утечка автоматически отключит защиту.

Пример этого видно на схеме рис. 3


Рис. 3

Если представить дифзащиту в виде простого механического устройства как весы (рис. 4 ) с порогом срабатывания до 10 mA. То сразу становится понятно, что при достижении значения 10 mA на одной из чаши весов, они выйдут из равновесия при этом разомкнутся контакты и контролируемая (защищаемая) линия обесточится. Причем заметим, что центром равновесия весов служит именно или , поэтому именно их и надо использовать, чтобы человек сам не являлся этим центром.

Внимание!

Также нужно понимать, что УЗО является дополнительной мерой безопасности, которое реагирует только на дифференциальный ток (ток утечки) и не реагирует на короткие замыкания и перегрузку линии. Поэтому, как правило, УЗО устанавливается вместе с автоматическими выключателями, которые реагируют на КЗ (короткое замыкание) и перегрузку линии по напряжению, на которую они рассчитаны.

Наглядная электрическая схема подключения УЗО

Рис. 5

УЗО. Видео пояснение

Выбор электромеханического УЗО

Желаю удачного монтажа и помните о электробезопасности .

ВЫКЛЮЧАТЕЛИ ДИФФЕРЕНЦИАЛЬНЫЕ типа ВД1-63 (УЗО). Руководство по эксплуатации

Паспорт

3421-033-18461115-2007 РЭ, ПС

1 Назначение и область применения

1.1 Выключатели автоматичес­кие, управляемые дифференциаль­ным током, без встроенной защиты от сверхтоков, функционально не зависящие от напряжения сети бы­тового и аналогичного применения типа ВД1 -63 (УЗО) торговой марки IEK® (далее - ВД) предназначены для эксплуатации в однофазных или трехфазных электрических сетях переменного тока напряжением до 400 В частотой 50 Гц

и по своим характеристикам соответствуют ГОСТ Р 51326.1 и техническим условиям ТУ 3421 -033-18461115-2002.

1.2 ВД выполняют функцию обнаружения дифференциального тока, сравнения его со значением дифференциального тока срабаты­вания и отключения защищаемой цепи в случае, когда дифференци­альный ток превосходит это значе­ние. ВД обеспечивают:

— защиту людей от поражения электрическим током при косвенном контакте с доступными проводящими частями электроустановок при по­вреждении изоляции (ВД с номиналь­ным отключающим дифференциаль­ным током 10; 30 и 100 мА);

— защиту от пожаров, возника­ющих вследствие возгорания изо­ляции токоведущих частей электро­приборов от дифференциального (остаточного) тока на землю или вследствие длительного проте­кания тока повреждения в случае несрабатывания устройств защиты от сверхтоков (ВД с номинальным отключающим дифференциальным током I D n = 300 мА);

— ВД, имеющие номинальный отключающий дифференциальный ток не более 30 мА, могут использо­ваться как средства дополнитель­ной защиты в случае выхода из строя устройств, предназначен­ных для защиты от поражения электрическим током.

1.3 Основная область использо­вания ВД - учетно - распределительные щиты жилых и общественных Зданий, устройства временного электроснабжения строительных площадок, садовые дома, гаражи, объекты розничной торговли.

2 Основные характеристики

2.1 Основные характеристики ВД приведены в таблице 1.

Таблица 1

Наименование характеристики Значение
Число полюсов 2 4
Номинальное рабочее напряжение переменного тока Ue, В 230 230, 400
Номинальная частота сети, Гц 50
Диапазон напряжений работоспособности устройства эксплуатационного контроля, В от 115 до 265 от 200 до 460
Номинальный ток In, А 16, 25, 32, 40, 50, 63, 80, 100
Номинальный отключающий дифференциальный ток I D n , мА 10, 30, 100, 300
Номинальный неотключающий дифференциальный ток I D n o , мА 0,5 I D n
Номинальная наибольшая включающая и отключающая способность Inm, А 1000
Номинальная наибольшая дифференциальная включающая и отключающая способность I D m , А 1000
Номинальный условный ток короткого замыкания не менее, А 3000
Номинальный условный дифференциальный ток короткого замыкания I nc , не менее, А 3000
Характеристика функционирования при наличии дифференциального тока с составляющей постоянного тока, тип АС
Электрическая износостойкость, циклов включения-отключения (В-О), не менее 4000
Механическая износостойкость циклов В-0, не менее 10 000
Максимальное сечение провода, присоединяемого к силовым зажимам, мм 2 50
Наличие драгоценных металлов, серебро, г 0,25 (на один контакт)
Климатическое исполнение и категория размещения по ГОСТ 15150 УХЛ14
Степень защиты по ГОСТ 14254 IP20
Срок службы, не менее, лет 15

2.2 Значения максимального времени отключения ВД при наличии дифференциального тока приведены в таблице 2.

Таблица 2

Внимание! ВД не имеет встроен­ной защиты от сверхтоков, поэтому последовательно с ним необходимо включать автоматический выключа­тель аналогичного или меньшего номинала с типом защитных характеристик от сверхтоков В и С.

2.3 Габаритные и установочные размеры приведены на рисунке 1.

2.4 Схемы электрические принципиальные ВД приведены на рисунках 2 и 3.

2.5 Применение ВД в квартирных и этажных щитах в электроустановках с системами заземления TN-S, TN-C-S, TN-C регламентируется в ГОСТ Р 51628.

3 Комплектность

В комплект поставки входят:

  • ВД - 1 шт.;
  • упаковочная коробка - 1 шт.;
  • руководство по эксплуатации и паспорт - 1 экз.

4 Монтаж и эксплуатация

4.1 Монтаж, подключение и пуск в эксплуатацию ВД должны осуществляться только квалифици­рованным электротехническим персоналом.

4.2 ВД устанавливают на мон­тажной рейке шириной 35 мм (DIN- рейке) в электрощитах со степенью защиты по ГОСТ 14254 не ниже IP30.

4.3 После монтажа и проверки его правильности подают напряже­ние электрической сети на электро­установку и включают ВД перево­дом рукоятки управления в положе­ние «I» - «ВКЛ», нажимают кнопку

«ТЕСТ». Немедленное срабатыва­ние ВД (отключение защищаемой устройством цепи) означает, что ВД исправно.

4.4 Если после включения ВД сразу или через некоторое время происходит его отключение, не­обходимо определить вид неис­правности в электроустановке в следующем порядке:

а) взвести ВД рукояткой управ­ления. Если ВД взводится,

то это означает, что в электроуста­новке имела место утечка тока на землю, вызванная нестабильным или кратковременным нарушением изоляции. Проверить работоспо­собность ВД нажатием кнопки «ТЕСТ»;

б) если ВД не взводится,

то это означает, что в электроуста­новке имеет место дефект изоляции какого-либо электроприемника, электропроводки, монтажных проводников электрощита или ВД неисправно.

В этом случае необходимо произвести следующие действия:

— отключить все электроприем­ники и взвести ВД. Если ВД взво­дится, то это свидетельствует о на­личии электроприемника с повреж­денной изоляцией. Неисправность выявляется путем последователь­ного подключения электроприемни­ков до момента срабатывания ВД. Поврежденный электроприемник необходимо отключить. Проверить работоспособность ВД нажатием кнопки «ТЕСТ»;

— если при отключенных электроприемниках ВД продолжает срабатывать, необходимо вызвать квалифицированного специалиста- электрика для определения харак­тера повреждения электроустанов­ки или выявления неисправности ВД.

Проверка осуществляется на­жатием кнопки «ТЕСТ». Немедлен­ное срабатывание ВД и отключение защищаемой электроустановки означают, что ВД исправно.

Последние вопросы:

Подписка на обновления Подписывайтесь и получайте свежую и интересную информацию прям на свой почтовый ящик

Защитное отключение особенно актуально когда в доме используется большое количество различных электроприборов. В этой статье мы рассмотрим приборы защитного отключения, которые рекомендуются и используются при строительстве частных домов. Будет приведена схема устройство защитного отключения. Разберем вопрос что и когда использовать - УЗО или дифавтомат (дифференциальный автомат). Кроме того, выясним основные отличия автоматов защитного отключения.

Виды автоматов защитного отключения

Важной ступенью в организации электробезопасности являются защитные электрические аппараты или, как их чаще называют, автоматы. Условно, их можно разделить на три вида:

  • автоматические выключатели (АВ);
  • устройства дифференциального отключения (УЗО);
  • дифференциальные автоматические выключатели (ДАВ).

Рис 1. Автоматический выключатель


Рис 2. Устройство защитного отключения (УЗО)


Рис 3. Дифференциальный автоматический выключатель (ДАВ)

Принцип работы аппаратов защитного отключения

Автоматические выключатели (АВ) , см. рис.1, устанавливаем для защиты электропроводки от перегрузок по току, а электропотребителей от коротких замыканий. Перегрузки по току приводят к нагреву проводника, что ведет к возгоранию проводки и выходу ее из строя.

Устройство защитного отключения (УЗО) принцип работы (рис.2). Устанавливаем для защиты от поражения электрическим током, в случае пробоя изоляции аппаратуры и проводки. УЗО защитит нас и в случае прикосновения к открытым неизолированным участкам проводки или аппаратуры, находящихся под напряжением 220 В и не даст возникнуть пожару, если проводка неисправна.

Если появляется разность токов, то УЗО отключает подачу напряжения. Выбирать УЗО необходимо по двум параметрам: чувствительности и номинальному току. Обычно для домашних целей выбирают УЗО с чувствительностью 300 мА. Номинальный ток выбирается в зависимости от суммарной мощности электропотребителей и должен быть равен или быть на порядок ниже номинального тока вводного автоматического выключателя (АВ), потому что УЗО не защищает от короткого замыкания и перегрузок по току. Устройство защитного отключения УЗО устанавливают обычно в схеме после счетчика для защиты всей проводки в доме, см. рис. 4, 5. По современным нормам, установка УЗО является обязательной.


Рис. 4. Схема подключения УЗО


Рис. 5 Схема монтажная электроснабжения дома с использованием УЗО

1 - щиток распределительный; 2 - нейтраль; 3 - ш ина заземления; 4 - ф аза; 5 - УЗО; 6 - ав томатический выключатель; 7 - п итание потребителей.

Дифференциальные автоматические выключатели (ДАВ) объединяют в себе функции УЗО и АВ. Схема дифференциального автомата основана на защите цепей от коротких замыканий и перегрузок, а также защита людей от поражения электрическим током при касании к токоведущим частям, см. рис. 6.


Рис. 6. Схема работы ДАВ

Эти устройства получили широкое распространение в бытовых электрических сетях (220/380 В), в розеточных сетях. Дифференциальный автоматический выключатель состоит из быстродействующего автоматического выключателя и устройства защитного отключения, который реагирует на разность токов в прямом и обратном направлениях.

Принцип работы дифференциального автомата. Если изоляция электропроводки не повреждена и отсутствует касание человека к токоведущим частям, значит в сети отсутствует ток утечки. Значит токи в прямом и обратном (фаза-ноль) проводниках нагрузки равны. Эти токи наводят в магнитном сердечнике трансформатора тока ДАВ равные, но встречно направленные магнитные потоки. В результате чего ток во вторичной обмотке равен нулю и не вызывает срабатывание чувствительного элемента - магнитоэлектрической защелки.

При возникновении утечки, например: при прикосновении человека к фазному проводнику, баланс токов и магнитных потоков нарушается, во вторичной обмотке появляется ток небаланса, который вызывает срабатывание магнитоэлектрической защелки, воздействующей в свою очередь на механизм расцепителя автомата с контактной системой.

Для осуществления периодического контроля работоспособности УЗО и ДАВ предусмотрена цепь тестирования. При нажатии кнопки "Тест" искусственно создается отключающий дифференциальный ток. Срабатывание аппаратов защиты означает, что оно в целом исправно.

Выбор защитного автомата

Теперь, определимся в каком случае и какому защитному автомату нам отдать предпочтение:

  • Для защиты проводки осветительной сети, от которой питаются все наши светильники, выбираем автоматические выключатели (АВ) с токами срабатывания 16 А.
  • Розеточную сеть в доме, которая используется для включения утюгов, настольных ламп, телевизора, компьютера и т.д., должны защищать автоматические выключатели с дифференциальной защитой (ДАВ).
  • Для розеточной сети мы выбираем ДАВ с током срабатывания 25 А и дифференциальным током отключения 30 мА.
  • Для подключения в доме кондиционера, посудомоечной машины, электропечи, СВЧ-печи и других, так необходимых нам в быту мощных приборов, требуется своя индивидуальная розетка и следовательно свой автоматический выключатель с дифференциальной защитой. Например, для подключения электропечи мощьностью 6кВт необходим дифференциальный автоматический выключатель с токами отключения 32 и 30 мА.

Обращаю внимание, что розетки все должны быть с заземляющим контактом. Силовое оборудование, например точильный станок, советую подключать к автоматическому выключателю. Так как вся сеть у нас в доме на напряжение 220 В, то и перечисленные автоматические выключатели выбираем на соответствующее напряжение.

Поговорим об автоматическом выключателе, который в целях безопасности требуется поставить на вводе. Если мы все розеточные линии защитили автоматическими выключателями с дифференциальной защитой, то на вводе мы ставим автоматический выключатель (АВ) с номинальным током определенным техническими условиями и однолинейной схемой проекта «Электрооборудование жилого дома».

Но можно после вводного автоматического выключателя (АВ) поставить устройство защитного отключения (УЗО) с током дифференциальной защиты 300 мА. Такую схему включения смотрите на рис.5. Если мы выбираем такой вариант защиты, то он не обязывает нас устанавливать дифференциальные автоматические выключатели для розеточной сети, а просто установим автоматический выключатель (АВ), смотрите тот же рис. 5. Такая схема приемлема если у нас всего одна розеточная линия с рядом розеток. Но она совершенно не рациональна, если у нас ряд самостоятельных приемников, включенных в индивидуальные розетки.

Например: У вас имеется токовая утечка на корпус стиральной машины и вы случайно прикасаетесь к ней. Мгновенно сработает дифференциальная защита и ДАВ стиральной машины отключится. Вам не трудно будет определить и устранить причину. А представьте, сколько необходимо поработать, чтобы найти причину отключения УЗО на вводе.

Хочу сказать, что на современном рынке автоматических выключателей и УЗО очень большой выбор аппаратов, как отечественного производства, так и зарубежного. Надо учесть, что продукция отечественного производства отличается большими габаритными размерами, возможностью регулирования по току, меньшей ценой, а срок службы в бытовых условиях практически одинаков.

Таблица 1. Сравнение стоимости автоматических выключателей

Заключение

Итак, в статье мы с Вами рассмотрели вопросы электробезопасности. Особенно актуальны они стали, когда в наш дом вошло огромное количество электроприборов, бытовой электроники и компьютеров. Проводка несет очень высокую нагрузку и защитное отключение необходимо. Современная техника очень дорогая и требовательная к качеству сетей. Поэтому не стоит экономить на мерах защиты, потому что стоимость УЗО не соизмерима со стоимостью оборудования в вашем доме, и тем более с ценой человеческой жизни.

Внимание: Цены актуальны на 2009 год.

С самых ранних лет детей предостерегают по поводу опасного воздействия электричества. Позже, на уроках физики они узнают, что смертельно опасной является сила тока больше 0,1А или 100мА. Но многие люди путают это понятие и напряжение.

Прежде, чем знакомиться с устройством прибора, способного защитить от губительного действия электричества, нужно освежить в памяти его основные концепции. Поток электрических зарядов, благодаря способности создавать тепловые, электромагнитные, электрохимические взаимодействия является энергоносителем, в корне определившим развитие человечества.

Но, при прохождении сквозь человеческое тело, эти взаимодействия пагубно влияют на строение клеток на молекулярном уровне, вызывая их гибель. Также парализованной становится нервная система, работающая по принципу обмена электрическими зарядами. Чем больше электронов проходит через проводник, тем большей является сила тока, тем больше его поражающее действие.

Визуализация электричества

Наглядно эту силу можно сравнить с объёмом двигающейся воды, тогда как напряжение с разницей уровней. Падающая с большого вертикального расстояния тонкая струя не окажет ощутимого воздействия на человеческое тело, в сравнении с метровой высоты потоком, сбивающим с ног.

Напряжение U создаёт электрический ток, прямо пропорциональный U, а его сила I, согласно закону Ома, обратно пропорциональна сопротивлению R источника питания, питающих проводов и самого проводника, которым является человеческое тело в момент поражения, I=U/R. Поскольку напряжение сети стандартно, её сопротивление очень мало, степень поражающего влияния электричества зависит от сопротивления организма, сухости кожи, наличия обуви.

Измерение утечки вызывающей поражение.
В идеальной двухпроводной системе токи в фазном и нулевом проводе равны: IL= IN. Если где-нибудь в цепи произойдёт контакт провода с землёй через плохую изоляцию, или человеческое тело, то IL= IN+IΔn, где IΔn — ток утечки, вызывающий поражение, или воспламенение кабеля. Соответственно IΔnравен разнице входного и выходного токов: IΔn= IL-IN.

Измерение данной разницы (англ. different) с помощью дифференциального трансформатора дало возможность создать устройство защитного отключения (сокращённо УЗО), которое размыкает цепь, отключая напряжение, если IΔn превышает опасное для здоровья значение, или пожароопасный ток больше 100мА.

Дифференциальный трансформатор тока имеет две первичные обмотки (катушки), включённые разнонаправлено, и вторичную обмотку, которая имеет подключение к исполнительному устройству отключающего механизма. Если в первичных катушках IL= IN, то магнитный поток в тороидальном сердечнике будет взаимно скомпенсированным ФL = ФN, соответственно на вторичной обмотке не будет наводится электродвижущая сила, не будет тока и его воздействия на электромагнитное реле выключателя.

Момент срабатывания устройства

В случае появления утечки IL> IN , что приводит к дисбалансу магнитных потоков, ФL > ФN, а их разница, благодаря электромагнитной индукции, будет воздействовать на вторичную катушку, в ней возникнет ток IΔ>0, отключающий защитный выключатель.

Таким образом, принцип работы УЗО состоит в срабатывания размыкающего механизма (расщепителя) при сопоставлении входных и выходных токов, если превышение их разницы выше установленного значения, которое называют уставкой. В виду того, что существуют потери тока, вызванные электромагнитным излучением, конденсаторным эффектом, статичным разрядом, а также, потому что изоляция не идеальна, уставка принимается выше нулевого значения и зависит от сферы применения устройств защиты.

Данный принцип измерения дифференциального тока справедлив и для трёхфазного напряжения. В данном случае применяются четверо первичных обмоток: три фазные и одна нулевая, и в идеальной системе сумма всех токов равна нулю. При утечке на одном из фазных проводов равновесие нарушается и возникает IΔ, вызывающий срабатывание защиты.

Номинальный отключающий ток (уставка)

Для кабелей электрических линий, согласно ПУЭ, принимается значение потерь 0,01мА на каждый метр провода, и для электроприборов применяется коэффициент 0,4 мА потерь на каждый Ампер нагрузки.

Поэтому для подключения с помощью коротких проводов сравнительно небольшой нагрузки применяют как можно меньшую уставку из ряда унифицированных значений отключающего номинального дифференциального тока IΔn, который указывают на корпусе УЗО: 10; 30; 100; 300;500 мА.

Например, для подключения бойлера, розеток, освещения в ванной, где вероятность поражения велика в виду высокой влажности воздуха и мокрых поверхностей, применяется IΔn=10мА. Также данная уставка подходит для кухни или электрификации подвала, гаража. Для всего дома нужно выбрать устройство защитного отключения с IΔn=30мА, во избежание ложных срабатываний из-за большого количества потребителей при значительной протяжённости сети.

Для обеспечения пожарной безопасности энергосетей большой протяжённости применяют значения уставки выше 100мА. Для разных групп потребителей возможно параллельное подключение нескольких УЗО с разным дифференциальным током отключения. Также распространена схема последовательного включения УЗО с различной уставкой для обеспечения селективной защиты.

Практическое использование

Чтобы принцип работы УЗО был более понятен, нужно рассмотреть варианты его практического использования. В случае, если используется двухпроводная система питания, если внутренняя схема электроприбора дала сбой и появилось опасное напряжение на его корпусе, при прикосновении к нему или оголённому проводу под напряжением, ток пойдёт через человеческое тело в землю, тем самым нарушая баланс токов в дифференциальном трансформаторе, из за чего возникший IΔ отключит питание.

Пострадавший при этом получит шок из-за краткосрочного действия тока, превышающего уставку, значение которого будет зависеть от суммы сопротивлений кожи, тканей организма, обуви, пола.

Влажность и площадь контакта тоже имеют существенное значение, поэтому травматизм и глубина шока зависят от условий в каждом конкретном случае, но степень поражения не является фатальной ввиду краткосрочности воздействия поражающего фактора, из-за высокого быстродействия УЗО.

При условии использования дополнительного третьего заземляющего проводника РЕ, при пробое изоляции внутри электроприбора, поражения вообще не случится, так как в этот момент при появлении тока утечки тут же сработает УЗО. Без его использования, поражения хоть и не произойдёт ввиду заземления корпуса, но токи утечки опасны своим тепловыделением, которое может привести к дальнейшему разрушению электроприбора и даже спровоцировать его возгорание, приводящее к пожару.

Считается, что при токе большем 100мА в точке пробоя изоляции выделяется достаточно тепла, чтобы нагреть контактирующие материалы до температуры их плавления и возгорания.

Поэтому УЗО, помимо защиты от смертельного электрического шока также с успехом применяется для обеспечения пожарной безопасности сети. Очевидно, что данную функцию выполняют УЗО с любой уставкой, но нужно помнить, что устройства защиты с IΔn>100мА применяются только для предотвращения пожаров при токах утечки в пробоях изоляции.

Важно

При контакте выходного нулевого провода УЗО с землёй, заземлением или входным нулём, будет ложное срабатывание защиты.
Поскольку УЗО не защищает от короткого замыкания и перегрузок по току, его надо устанавливать вместе с защитным автоматом.
Работоспособность УЗО следует периодически проверять с помощью кнопки «Тест».

Основное назначение УЗО является защита людей от поражения электрическим током при неисправности электрооборудования(оказавшиеся под напряжением в результате повреждения изоляции) в результате случайного или неосознанного контакта человека с токоведущими частями.

Также предотвращение пожаров вызванных возгоранием электропроводки при протекании токов утечки.

Принцип работы УЗО

Принцип работы УЗО ? - этим вопросом задаются многие.

Как известно из курса электротехники, электрический ток течет из сети по фазному проводу через нагрузку и возвращается обратно в сеть по нейтральному проводу. Это закономерность легла в основу работы УЗО.

При равенстве этих токов I вх = I вых УЗО не реагирует. Если I вх > I вых УЗО чувствует утечку и срабатывает.

То есть, токи протекающие по фазному и нейтральному проводу, должны быть равны (это касается однофазной двухпроводной сети, для трехфазной четырехпроводной сети ток в нейтрали равен сумме токов которые протекают в фазах). Если токи не равны – значит имеется утечка, на которую и реагирует УЗО.

Рассмотрим принцип работы УЗО более детально.

Основным элементом конструкции устройства защитного отключения является дифференциальный трансформатор тока. Это тороидальный сердечник на который намотаны обмотки.

При нормальной работе сети, электрический ток протекающий в фазном и нулевом проводе создает в этих обмотках переменные магнитные потоки, которые равны по величине, но противоположны по направлению. Результирующий магнитный поток в тороидальном сердечнике будет равен:

Ф ∑ = Ф L - Ф N = 0

Как видно из формулы магнитный поток в тороидальном сердечнике УЗО будет равен нулю, следовательно ЭДС в контрольной обмотке наводится не будет, ток в ней, соответственно тоже. Устройство защитного отключения в этом случае не работает и находится в спящем режиме.

Теперь представим что человек коснулся электроприбора который в результате повреждения изоляции оказался под фазным напряжением. Теперь через УЗО кроме тока нагрузки будет протекает дополнительный ток - ток утечки.

В этом случае, токи в фазном и нулевом проводе не будут равны. Результирующий магнитный поток также не будет равен нулю:

Под воздействием результирующего магнитного потока в контрольной обмотке возбуждается ЭДС, под действием ЭДС в ней возникает ток. Ток возникший в контрольной обмотке приводит в действие магнитоэлектрическое реле которое отключает силовые контакты.

Максимальный ток в контрольной обмотке появится тогда когда в одной из силовых обмоток тока не будет. То есть, это ситуация когда человек коснется фазного провода, например в розетке в этом случае ток в нулевом проводе протекать не будет.

Несмотря на то, что ток утечки весьма невелик, УЗО оснащают магнитоэлектрические реле с высокой чувствительностью, пороговый элемент которого способен среагировать на ток утечки 10 мА.

Ток утечки это один из основных параметров по которому выбирают УЗО. Существует шкала номинальных дифференциальных токов отключения 10 мА, 30 мА, 100 мА, 300 мА, 500 мА.

Следует понимать, что устройство защитного отключения реагирует только на токи утечки и не работает при перегрузках и коротких замыканиях. Не сработает УЗО и в том случае, если человек одновременно возьмется за фазный и нулевой провод. Это происходит по тому, что человеческое тело в этом случае можно представить как нагрузку, через которую проходит электрический ток.

Из-за этого вместо УЗО устанавливают дифференциальные автоматы, которые по своей конструкции объединяют одновременно УЗО и автоматический выключатель.

Проверка работоспособности УЗО

Для того чтобы осуществлять контроль исправности (работоспособности) УЗО, на его корпусе предусмотрена кнопка «Тест» , при нажатии на которую искусственно создается ток утечки (дифференциальный ток). Если устройство защитного отключения исправно, то при нажатии на кнопку «Тест» оно отключится.